
SITUATION_65 Squarerooti 070222RF.doc  Page 1 of 6 

MAC-CPTM Situations Project 
 

Situation 65: Square root of i 
 

Prepared at Pennsylvania State University 
Mid-Atlantic Center for Mathematics Teaching and Learning 

14 September 2006 – Heather Godine, Shiv Karunakaran, and Evan McClintock 
 

Edited at University of Georgia 
Center for Proficiency in Teaching Mathematics 

22 February 2007—Ryan Fox 
 
Prompt 
 
Knowing that a Computer Algebra System (CAS) had commands such as cfactor 
and csolve to factor and solve complex numbers respectively, a teacher was 

curious about what would happen if she entered 

€ 

i .  The result was 

€ 

2
2

+
2
2
i.  

Why would a CAS give a result like this?   
 
 
Commentary 
 

When using a CAS, students and teachers can encounter situations that 
cause them to question why the CAS may give a particular result. Symbolic 
verification and manipulation can be used to confirm results given by a CAS.  
Mathematical focus 1 accounts for the reasoning behind the symbolic work by 
confirming that the result makes sense.  However, this focus does not deal with 

how 

€ 

i =
2
2

+
2
2
i can make sense within a larger system. To address the 

underlying mathematical logic relating to why 

€ 

i =
2
2

+
2
2
i, mathematical foci 

2, 3 and 4 utilize representations of complex numbers on the complex plane.  
Mathematical focus 2 connects powers of 

€ 

i  to points of the unit circle on the 
complex plane and their images under rotations, and mathematical focus 3 uses 
Euler’s formula to represent complex numbers in exponential and trigonometric 
form.  Mathematical focus 4 considers the powers of i as elements of cyclic 
groups.  
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Mathematical Foci 
 
Mathematical Focus 1 
 
Solving the equation 

€ 

x 2 = i, where 

€ 

x = a + bi , and verifying the solution to the 
equation provides a representation of the square root of the imaginary number.   
 

Knowing that any complex number is of the form a+bi, where a and b are 
real numbers, we can determine square roots of 

€ 

i  by solving the equation 

€ 

a + bi( )2 = i for 

€ 

a  and 

€ 

b. To solve the equation, first we expand 

€ 

a + bi( )2, and the 

equation becomes 

€ 

a2 + 2abi − b2 = i. Equating the real and complex parts of the 
equation, 

€ 

a2 − b2 = 0  and 

€ 

2ab =1. Therefore, 

€ 

a = ±b and either 

€ 

2b2 =1 or 

€ 

−2b2 =1. 
However, since we know that both

€ 

a  and 

€ 

b are real and that 

€ 

−2b2 =1 has no real 
solutions, we only consider the equation 

€ 

2b2 =1. However, if ba −= , then 
1222 2 =−=⋅−⋅=⋅⋅ bbbba , which is not possible, meaning that 

€ 

a = −b  is not 

possible, leaving 

€ 

a = b as the only possibility. Solving 

€ 

2b2 =1 for 

€ 

b gives 

€ 

b =
2
2

 

and 

€ 

b = −
2
2

. Therefore the equation 

€ 

a + bi( )2 = i has two sets of solutions, 

namely

€ 

a =
2
2

, 

€ 

b =
2
2

 and 

€ 

a = −
2
2

, 

€ 

b = −
2
2

. In this way, 

€ 

2
2

+
2
2
i and 

€ 

−
2
2

+ −
2
2
i  are both square roots of 

€ 

i . (See Spencer, 1999.) 

 
One way to verify that a complex number is a square root of another 

number is to square that complex number and verify that the square and the 

other number are equivalent. By squaring the expression

€ 

2
2

+
2
2
i, we can verify 

that 

€ 

2
2

+
2
2
i is a square root of     

€ 

x2 = i .  It is useful to note that the symbolic 

manipulations needed to expand the expression 

€ 

2
2

+
2
2
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

will treat it as 

though it were an algebraic expression of the form 

€ 

(a + b)2  from the real domain. 

Expanding

€ 

2
2

+
2
2
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

 gives 

€ 

2
2

+
2
2
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

=
2
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ 2 1
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ i +

2
2
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

. 

Simplifying

€ 

2
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ 2 1
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ i +

2
2
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

gives 

€ 

2
2

+
2
2
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

=
1
2

+ i − 1
2

= i . 

Since 

€ 

2
2

+
2
2
i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

= i, we conclude that a square root of     

€ 

x2 = i  is equal to 

€ 

2
2

+
2
2
i. 
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Mathematical Focus 2 
 
Relating powers of i to rotations involving the unit circle on the complex plane 
 
Consider the unit circle on the complex plane, and on this circle, consider the 
point representations of i0 and i (figure 1).  

 
Figure 1 First quadrant of the unit circle on the complex plane. 

 
Note that the point representing i is the image of the point representing i0 under 
ρ(O,90°), a rotation of 90º about the origin (O). Thus, if the point for i0 could be 
represented as (1,0), and if the point for i could be represented as 
ρ(O,90°)((1,0))=(0,1), then the point for i  can be thought of as the image of the 
point for i0 under ρ(O,45°), a rotation of 45° (figure 2). Moreover, the point for i can 

also be thought about as the image of the point for i  under ρ(O,45°) So, ρ(O,45°) 

composed with itself is the same as ρ(O,90°). That is, ρ2(O,45°).=ρ(O,90°) 

 
Figure 2 Images of points representing powers of i as rotations. 

 
We can notice that each point on the circle corresponds to the complex number, 
cos x + i sin x . This is shown in figure 3. 
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Figure 3 Coordinates of Points on the Complex Unit Circle 

 

The point representing i
1
2  is the image of the point for i0 under a rotation of 45º 

about the origin. Therefore, the coordinates of i
1
2  have to be 

 
(cos45,sin 45 ) = 2

2
, 2
2

⎛

⎝⎜
⎞

⎠⎟
.  Thus, i

1
2 =

2
2
+

2
2
i . 

 
Mathematical Focus 3 
 
By using Euler’s formula, the connection between the trigonometric 
representation of any complex number and the square root of the imaginary 
number is made more explicit.   

 
Knowing that every point on the unit circle on the complex plane 

corresponds to a complex number 

€ 

z , where 

€ 

z = cosθ + isinθ , Euler’s formula, 

€ 

eiθ = cosθ + isinθ , can be used to express those complex numbers in the 
exponential form 

€ 

z = eiθ .  For example, if we let 

€ 

θ = π , we arrive at 

€ 

z = eiπ = cosπ + isinπ = −1, which can be represented by the point (-1,0) on the unit 

circle on the complex plane. Similarly, if we let θ =
π
2

, we arrive at 

z = ei
π
2 = cosπ

2
+ i sinπ

2
= i , which can be represented by the point (0,1) on the unit 

circle on the complex plane. Since we are interested in determining 

€ 

i  and 

since ei
π
2 = i , by Euler’s formula, it follows that ei

π
2 = i . Since i

π
2 = ei

π
2( )

1
2
, using 

properties of exponents, we can conclude that i
1
2 = ei

π
4 . In this way, if we let 

θ =
π
4

, we arrive at z = ei
π
4 = cosπ

4
+ i sinπ

4
=

2
2
+

2
2
i , which can be represented 
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by the point 
2
2
, 2
2

⎛

⎝⎜
⎞

⎠⎟
 on the unit circle on the complex plane. Since 

ei
π
4 =

2
2
+

2
2
i , and i

1
2 = ei

π
4 , we can conclude that i

1
2 =

2
2
+

2
2
i . 

 
 
Mathematical Focus 4 
 
The value of the square root of the imaginary number can be determined by 
investigating this value in relationship to cyclic groups.   
 

This situation deals with i , which can of course be written as i
1
2 . So, one 

way to go about this situation is to look for patterns in the powers of i. To begin 
with, let’s look at the integer powers of i, starting with i0 . If we were to plot points 
representing the imaginary numbers 3210 ,,, iiii , we obtain the following figure 
(figure 4).  

 
Figure 4 The four powers of i 

 
Note that all four powers of i above are on the complex unit circle. Moreover, the 
four points are positioned at equal increments around the circle (exactly at 

 90 increments).  Furthermore, we can see the that fourth power of i can be 
plotted in the same position as the zero power of i ( i.e., i4 = i0 = 1 ). We can also 
see that every integer power of i greater than 3 is plotted on the above four points 
around the complex unit circle. This arrangement, at equal increments, around a 
circle of the four powers of i, and the cyclic property of the powers described 
above, leads to looking at a cyclic group generated by i.  
 
Consider a cyclic group, (G,  ), of order 4, isomorphic to ( Z 4 ,+), which can be 

generated by using the imaginary number i as the generator, i.e. i4 k = 1, where 
k ≥ 0  and k is an integer. Note that 1 is called the identity element of the group G. 
Also, we can list all the elements of this group by considering the powers of i, i.e. 
G = i 4 = {1,i

1,i2 ,i3} . As discussed before, the elements of the cyclic group, G, can 

be very naturally illustrated as four symmetric points on the unit circle in the 
complex plane, as shown in figure 4.  



SITUATION_65 Squarerooti 070222RF.doc  Page 6 of 6 

 

Since we are interested in i
1
2 , however, we can further this discussion of the 

powers of i, by examining the first eight powers of i, increasing the powers in 

increments of 
1
2

. Thus, now we are increasing the order of the group from 4 to 8. 

So now we have the cyclic group, (H,  ), isomorphic to ( Z 8 ,+), given by 

H = i 8 = {1,i
1
2 ,i1,i

3
2 ,i2 ,i

5
2 ,i3,i

7
2 } . This group can also be illustrated on the unit 

circle on the complex plane as shown in figure 5. 
 

 
Figure 5 The Cyclic Group (H,  ) 

 
To obtain the co-ordinates of these points on the complex unit circle, we can refer 

back to focus 2 and obtain 

€ 

i1 2 =
2
2

+
2
2
i . 
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